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Abstract 

In this paper, a novel real-coded genetic algorithm is presented to generate offspring towards a promising polygon field with k+1 

vertex, which represents a set of promising points in the entire population at a particular generation. A set of 19 test problems 

available in the global parameter optimization literature is used to test the performance of the proposed real-coded genetic 

algorithms. Several performance comparisons with five significant real-coded genetic algorithms, three state-of-the-art differential 

evolution algorithms and three others significant evolutionary computing techniques are performed. The comparative study shows the 

proposed approach is statistically significantly better than or at least comparable to twelve significant evolutionary computing 
techniques over a test suite of 19 benchmark functions. 
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1 Introduction 

 
Genetic algorithms (GAs), inspired by the natural 
evolution of species, have been successfully applied to 
solve numerous optimization problems in diverse fields. 
As powerful population-based stochastic search tech-
niques, the popularity of GAs is based on simply solving 
multidimensional and multimodal optimization problems 
without requiring any additional information such as the 
gradient of an objective function. As one of the most 
intensively studies classes of global optimization over 
continuous spaces, in the recent past, a lot of effort has 
been put into the development of sophisticated recom-
bination operators and framework of Real-coded GA 
(RCGA) for real parameter optimization [1-12]. 

Most of the population-based search algorithms try to 
balance between two contradictory aspects of their 
performance: exploration and exploitation. The first one 
means the ability of the algorithm to explore or search 
every region of the feasible search space, while the second 
denotes the ability to converge to the near-optimal 
solutions as quickly as possible [13,14]. Practical 
experience, however, shows that existing RCGAs still may 
occasionally stop proceeding toward the global optimum 
even though the population has not converged to a local 
optimum or any other point. Occasionally, even new 
individuals may enter the population, but the algorithm 
does not progress by finding any better solutions. In fact, it 
is impossible there is a general tractable algorithm that 
could efficiently and effectively solve all possible 
complexities of real-life optimization problems [14], which 
motivates researchers to develop better algorithms that 
yield better approximate solutions. 

In the context, we develop a new real-coded genetic 
algorithm to attempt to make a balanced use of the 
exploration and exploitation abilities of the search 
mechanism and to be therefore more likely to avoid false 
or premature convergence in many cases. In the proposed 
algorithm, a promising polygon field with k+1 vertexes is 
defined, which represents a set of promising points in the 
entire population at a particular generation, and offspring is 
generated towards the centroid of the polygon field. We 
call the proposed RCGA as real-coded genetic algorithm 
with oriented evolution towards promising region (OEGA). 
In this paper, a set of 19 test problems available in the 
global optimization literature including unimodal, 
multimodal, parameter dependency, and ill-scale parameter 
optimization problems are used to evaluate the 
performance of OEGA. To further judge the performance 
of the proposed approach, several performance 
comparisons with five significant real-coded genetic 
algorithms [1,5,7,12], three state-of-the-art differential 
evolution algorithms [8,13,14] and three others significant 
evolutionary computing techniques are performed [4,16-
18]. The comparative study shows the proposed approach 
is statistically significantly better than or at least 
comparable to several existing real-coded genetic 
algorithms as well as a few others significant evolutionary 
computing techniques over a test suite of 19 benchmark 
functions. 

2 Real-coded genetic algorithm with oriented 

evolution towards promising region 

 

2.1 RECOMBINATION OPERATOR 
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There exist EAs like DE/target-to-best/1 which uses the 

best individual of the population to generate offspring. 

By "best" we mean the individual that corresponds to the 

best fitness in the entire population at a particular 

generation. The scheme promotes exploitation since all 

the genomes are attracted towards the same best position 

on the fitness landscape through iterations, thereby 

converging faster to that point. But as a result of such 

exploitative tendency, in many cases, the population may 

lose its global exploration abilities within a relatively 

small number of generations, thereafter getting trapped to 

some locally optimal point in the search space. A proper 

trade-off between exploration and exploitation is 

necessary for the efficient and effective operation of a 

population-based stochastic search technique. In the 

context, we propose that the centroid of some promising 

region replace the "best" individual in the entire 

population at a particular generation, and the genomes of 

individual are attracted towards a polygon region with 

k+1 vertexes representing promising point in search 

space. Based on above idea, a new recombination 

operator is designed as follows: 
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where
P

X  and 
C

X  represents parent and offspring, 

respectively. iBX , is th
i  best promising point.

OX is the 

champion found on the fitness landscape through 

iterations.
rX is an individual selected randomly from the 

mating pool },...,{ ,1, NMMM XXP  . t is a parameter 

defined by user which decides the movement towards the 

promising search direction Pg XX  .  is a random 

generated number using Laplace(0, b) distribution with 

probability density function as Equation(4).kexpress k 

promising points from the mating pool 
MP . 

As in Equation (1), the first and second items decide 

the exploring direction; the third item strengthens the 

exploiting ability of the algorithm following the direction. 

The iBX , in Equation (4) is obtained using following 

subprocedure: 

SubStep1: Createmating pool 
MP  as follows: 

For ito mN  

Generate cluster iC  with sC  individuals selected 

randomly from the current population GP ; 

Assign the champion of cluster iC  to iMX ,  

End 

SubStep2:Sort the mating pool 
MP ,k best individuals in the 

mating pool 
MP  are as iBX ,  (i=1,2,...,k), respectively. 

 

2.2 GENERATION ALTERNATION MODEL 

 

In order to further strengthen the exploring ability of the 

algorithm and increase the potential diversity of the 

population, we define a mutation behavior as follows: a 

solution is randomly selected from the population GP  

and is mutated by given probability in each iteration. In 

this paper, we use MPTM (Makinen, periaux and 

toivanen mutation) mutation operator defined by 

Makinen et al. [11]. 

The detail of the proposed scheme is intertwined in 

the following manner: 

Step 1. Set the generation number G=0 and randomly 

initialize a population GP  of 
PN  individuals, and each 

individual uniformly distributed in the range 

 MaxMin XX , . 

Step 2. Create mating pool },...,{ ,1, NMMM XXP   

and obtain Promising Points Set iBX ,  (i=1,2,...,k). 

Step 3. Calculate the centroid gX  of the polygon 

formed by the promising points using Equation (3). 

Step 4. Selectrandomly cN  

individuals ,...,( 1,pX ), cNpX from the mating pool 
MP  

and generate cN  offspring },...,{ ,1, cNccc XXX   

usingEquation (1). 

Step 5. Evaluate cX . 

Step 6. Replace randomly an individual of the 

population GP  using the best offspring bestX  in the cX  

in the fitness landscape. 

Step 7. Mutate an individual selected randomly from 

the population GP  using MPTM mutation operator by 

probability
Mr . 

Step 8. G=G+1, repeat Step 2~Step 7 until the 

stopping criterion is not satisfied. 

3Simulations 

 

3.1 TEST BED 

 

We used a test-bed of 19 traditional benchmark functions 

including unimodal, multimodal, parameter dependency, 
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and ill-scale parameter optimization problems. The 19 

traditional benchmarks have been reported in the 

following where D represents the number of dimensions 

D=25 to 100. They apparently belong to the difficult class 

of problems for many optimization algorithms. 
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3.Schewefel problem 3 (
3

f ) 
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4.Schewefel problem 4 (
4

f ) 
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6. Griewank problem (
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7.Rastrigin function (
7
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8. Generalized penalized function 1 (
8

f ) 
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9. Generalized penalized function 2 (
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In the problem 17 and 18, the penalty function u is 

given by the following expression: 
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10. Ellipsoid function (
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11.k-tablet function (
11

f ) 

.0)(),0,...,0,0(,12.512.5

,)100()(

**

1 1

22



  
 

xfxx

xxxf

i

k

i

n

ki

ii
 

12. Axis parallel hyper ellipsoid (
12

f ) 
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13.Zakharow’s function (
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14. Exponential problem (
14

f ) 
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15. Ellipsoidal function (
15
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18.Bohachevsky function (
18

f ) 
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3.2PARAMETERS SETTING 

 

Finding the most appropriate combination of parameters 

occurring in an EA is termed as parameter tuning and is 

considered to be the most important and perhaps most 

difficult task. This difficulty also increases as we take 

larger and larger test suit into consideration because of 

multimodality and nonlinearity of different kind of 

objective functions. It becomes very challenging to 

suggest common fixed values of various parameters for 

the entire suit. To achieve this goal, we have carried out 

extensive experiments for the proposed OEGA approach. 

There exist eight important parameters in the proposed 

approach. Extensive experiments showed that the choice 

of numerical values for the three control parameters
PN , 

k and b highly depends on the problem under 

consideration. The varying of k is sensitive to the 

performance of the proposed approach and only when k is 

set to 2 or larger for the multimodal function, excellent 

results can be obtained. 
PN is recommended to set as in 

Table 1. Other control parameters are set as follows: 

sC : the size of Cluster iC  is set 10 for 
2f  and 

12f , 

15 for other problems. 

MN : the size of Mating pool
MP , 20 for all the 

problems. 

CN : the number of offspring generated in each 

generation, 2 for all the problems. 

k: the number of Promising Points from the mating 

pool 
MP , 1 for 

2f ~
4f  and 

12f  ; 2 for 
1f , 7f ~

11f  and 

15f ; 3 for 5f , 6f , 
14f , 16f , 18f  and 19f ; 4 for 10f . 

t: the parameter deciding the movement towards the 

promising search direction Pg XX  , set 2.5 for all the 

problem. 

b: the parameter of Laplace(0, b) distribution of   in 

Equation (1), 0.5 for 5f ~ 7f , 16f , 17f  and 19f , 0.1 for 

other problems. 

Mr : The mutation ratio of each gene of the individual 

selected from the population GP , 0.005 for all the 

problems. 

 

3.3 EXPERIMENTAL EVALUTION OF OEGA 

 

In this subsection, we perform a serial of experiments to 

evaluate the performance of the proposed approach. The 

study focuses on three important aspects of OEGA: 1) 

The speed of convergence measured in terms of the 

number of FEs required by an algorithm to reach a 

predefined threshold value of the objective function; 2) 

the frequency of hitting the optima (or success rate) 

measured in terms of the number of runs of an algorithm 

that converge to a threshold value within a predetermined 

number of FEs; 3) the issue of scalability, i.e., how the 

performance of an algorithm changes with the growth of 

the search-space dimensionality. The dimension of the 

variable in the entire problems is fixed to 30, 50 and 100, 

respectively. The number of FEs required by OEGA to 

reach two predefined thresholds ( 7
10

 and 20
10

 ) are 

reported for all the problems with different 

dimensionality. A lower number of FEs corresponds to a 

faster algorithm. 25 independent runs are carried out for 

every problem. It is considered to be successful if a run 

achieves to reach the predefined threshold. A run is 

terminated before reaching the max number of function 

evaluations if the error value )()(
*

xfxf  is less than the 
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given accuracy, where *
x is the global optimal solution. These experimental results are reported inTable 1. 

 
TABLE 1 Number of FEs achieving the fixed accuracy level using OSGA 

Func. D NP Threshold value=10−7 Threshold value=10−20 

Least No.of FEs MostNo.of FEs Mean No.of 

FEs 

LeastNo.of FEs MostNo.of FEs MeanNo.of FEs 

f1 30 300 13667 18414 15930 31658 35934 33821 

50 300 27132 33484 29963 58458 69304 63644 

100 300 74798 117690 85161 166282 196968 180516 

f2 30 1500 95870 238682 157541 - - - 

50 2000 287140 472328 351757 - - - 

100 2000 1151432 2191700 1594944 - - - 

f3 30 600 21584 42354 27405 56644 83610 64310 

50 900 59036 97336 75074 142442 181312 162638 

100 1500 307474 414642 358309 669412 764318 712000 

f4 30 1500 306260 428714 358330 697338 876414 805848 

50 1500 845512 1042796 903468 3501782 4559988 3998598 

f5 30 500 26174 45170 29816 - - - 

50 500 48272 76194 57879 - - - 

100 500 146430 212110 183115 - - - 

f6 30 1200 35704 43056 37843 65480 79980 68213 

50 1500 68644 74314 71494 121812 129070 125080 

100 1500 151066 1791544 288506 250666 785878 303656 

f7 30 900 84150 177304 123383 89918 205892 132924 

50 900 178824 285420 233555 176856 382173 278499 

100 900 357528 724248 494553 494403 857538 625887 

f8 30 900 28770 45252 31091 67088 73516 70182 

50 900 51368 84354 57203 121776 165420 128353 

100 900 137224 173442 155648 308682 343656 328863 

f9 30 900 29808 89276 36641 68240 126626 74496 

50 900 56844 334126 81253 124422 166828 133784 

 100 900 152898 555424 187582 323362 1665574 405156 

f10 30 300 17378 22128 19021 35386 41102 37144 

50 300 33530 42050 37270 65048 81990 71798 

100 300 92982 114422 104428 183222 229982 201363 

f11 30 300 14768 18126 16404 31692 35582 34061 

50 300 27676 32724 30223 60282 72942 64657 

100 300 75770 99476 84809 166222 203192 181933 

f12 30 300 13304 19458 15456 29570 38042 32332 

50 500 41568 56590 47634 88800 111102 97083 

100 1000 211436 304718 260608 485964 597608 522285 

f13 30 900 196522 407390 293392 337262 495984 427207 

50 2400 1389726 2048508 1670813 2320800 3203268 2626230 

f14 30 900 15124 17994 16616 42350 120072 71645 

50 900 26994 33302 29149 158456 1197380 410718 

100 900 64270 78006 69590 - - - 

f15 30 300 13270 16296 14858 30638 36900 34305 

50 300 27304 37342 32058 65752 79014 70992 

100 300 91856 145118 106267 218330 588986 283138 

f16 30 500 12380 15380 14031 30124 35282 32613 

50 500 23390 30458 25801 57440 66436 61418 

100 500 60710 92612 71600 165948 378112 191885 

f17 30 1200 22996 42562 25465 68634 120078 76678 

50 1200 41258 136460 50324 126036 430552 161421 

100 1200 108438 946430 215241 335740 667854 413736 

f18 30 900 24568 27414 26194 42934 49088 46047 

50 900 42000 80802 49459 74116 97638 77615 

100 900 98584 132908 112053 176982 943206 290975 

f19 30 1500 167164 180278 173016 374636 384600 379528 

50 2000 442260 716374 480956 954182 1904664 1054012 

 

As shown in Table 1, the proposed OEGA is enable to 

solve efficiently the function optimization with ill-scale, 

strong dependence among variables or multi-model. The 

proposed approach almost achieves the accuracy level 

7
10


 for all the tested problems except 

4f  and 19f  of 

D=100, 
20

10


 for all the tested problems except 
2f  

and 5f . Performance of most of the evolutionary 

algorithms deteriorates with the growth of the 
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dimensionality of the search space. Increase of 

dimensions implies a rapid growth of the hyper volume 

of the search space and this in turn slows down the 

convergence speed of most of the global optimizers. 

Table 1 show the proposed approach can efficiently solve 

all the problem of D=100 except 
4f and 19f . 

 

3.4 COMPARISIO WITH OTHER STATE-OF-THE-

ART EVOLUTIONARY TECHNIQUES 

 

In this subsection we compare the performance of OEGA 

with other State-of-the-Art Evolutionary Techniques. 

Genetic Algorithms (GA) are perhaps the most popular 

Evolutionary Algorithms for optimization problems in 

diverse fields. Five real-codedGAs (JGG+REXstar[1], rc-

CGA+FDPP-LX [5], rc-CGA+BLX-α[7], MMG+BLX-

α[7], SGA+LX-MPTM [12]) are employed to compare 

with the OEGA. JGG+JGG+REXstar, one of the excellent 

Real-coded GAs, can solve more efficiently real 

parameter optimization problems of multimodality, 

parameter dependency, and ill-scale. rc-CGA+FDPP-LX 

and rc-CGA+BLX-αare two efficient and effective Real-

coded GAs for parameter optimization problems. MMG 

is a commonly-used steady-state model originally and 

BLX-αcrossover is a classical crossover operator for real-

coded GA. MGG+BLX-αpresented excellent 

performance for parameter optimization of unimodality 

and multimodality. SGA+LX-MPTM is a simple genetic 

algorithm model with tournament selection and a 

crossover operator with Laplace distribution. We 

compare the number of FEs required by using algorithm 

to reach a predefined threshold value 7
10

  of the 

objective function D=30. The parameter settings 

JGG+REXstar, rc-CGA+FDPP-LX, rc-CGA+BLX-α, 

MMG+BLX-α, SGA+LX are kept same as [5] and [7]. 

The initial population cover the entire search space as 

much as possible by uniformly randomizing individuals 

within the search space constrained by the prescribed 

minimum and maximum parameter bounds. Mean 

Number of FEs required reaching predefined threshold 

value 
7

10


 for 50 independent runs of each of the six 

contestant algorithms are presented in Table 2. 

 
TABLE 2 Comparison with State-of-the-art Real-Coded GAs 

Func. Threshold 

value 

Mean Number of FEs required to reach predefined threshold value 

 rc-CGA+BLX 

 

MMG+BLX 

 

JGG+REXstar 

 

rc-CGA+FDPP-LX 

 

This work 

f1 10−7 13667 56545 16159 12657 15930 

f2 10−7 - - 90832 340453 157541 

f3 10−7 34765 96504 35674 48654 27405 

f4 10−7 101235 1794678 84745 250278 358330 

f5 10−7 38836 106564 32565 74654 29816 

f6 10−7 19943 124587 44165 44767 37843 

f7 10−7 227567 7606534 280342 240678 123383 

f8 10−7 42312 48565 14576 19256 31091 

f9 10−7 61732 51643 23454 76754 36641 

f10 10−7 16854 77143 25054 37554 19021 

f11 10−7 26012 77532 27012 41842 16404 

f12 10−7 19854 61967 17845 19956 15456 

f13 10−7 343245 215324 234124 147342 293392 

f14 10−7 11786 45268 14453 10832 16616 

f15 10−7 93012 71935 20546 25235 14858 

f16 10−7 14243 55012 25013 23532 14031 

f17 10−7 76732 98432 27021 55754 25465 

f18 10−7 27412 66443 39756 39754 26194 

f19 10−7 58120 383345 186431 590567 173016 

 

As shown in bold in Table 2, the OEGA get 12 

champion in term of the mean Number of FEs required 

reaching predefined threshold. A close inspection of 

Table 2 indicates that the performance of the proposed 

approach has remained clearly and consistently superior 

to that of the two classical real-coded GA schemes 

(MMG+BLX-αand SGA+LX-MPTM) as well as the 

other three state-of-the-art Real-code GAs. 

Differential Evolution (DE) [8] is a simple yet 

powerful algorithm for real parameter optimization. To 

further evaluate the performance of the proposed 

approach, we also compare the proposed OEGA with 

three DE variants (DE/rand/bin [8], SADE [13], and 

DEGL/SAW [14]. Among the competitors, DE/rand/bin 

belongs to the classical DE family. SADE, and 

DEGL/SAW are state-of-the-art DE variants. Eight 

classical problems (
1f ~ 8f ) are selected as test suite to 

obtain a comparative performance with DE variants, 

which were also used to test the performance of the 

family of DEs in [14]. To make the comparison fair, we 

use the same method of initialization as in [14]: 

asymmetrical initialization reported in [15]. 
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Asymmetrical initialization limits the initial process to 

just a portion of the feasible search space, which is a 

region defined to be half the distance from the maximum 

point along each axis back toward the origin. By contrast, 

symmetrical initialization is uniformly distributed about 

the entire search space. 

The comparative study focuses on the quality of the 

final solutions produced by each algorithm and the speed 

of convergence measured in terms of the number of FEs 

required by an algorithm to reach a predefined threshold 

value of the objective function. To judge the accuracy of 

different approaches, we first let each of them run for a 

very long time over every benchmark function, until the 

number of FEs exceeds a given upper limit (which was 

fixed depending on the complexity of the problem). The 

mean and the standard deviation (within parentheses) of 

the best-of-run values for 50 independent runs of each of 

the five algorithms are presented in Table 3. 

 
TABLE 3 Comparison with State-of-the-art DEs 

Func. D Max 

FEs 

Mean best value (Standard deviation) 

DE/rand/bin SADE DEGL/SAW This work 

f1 25 5×105 6.85e-29(4.98e-23) 4.04e-35(3.91e-32) 8.78e-37(3.82e-35) 9.44e-321(0.00e+00) 

100 5×106 8.47e-24(4.66e-22) 5.84e-24(3.82e-23) 3.67e-25(4.73e-23) 1.10e-38(5.39e-38) 

f2 25 5×105 9.83e-23(4.83e-24) 5.64e-26(9.36e-24) 6.89e-25(6.87e-21) 3.34e-23(5.99e-23) 

100 5×106 8.45e-05(2.74e-05) 8.64e-25(3.78e-24) 1.27e-15(7.72e-16) 8.65e-17(3.35e-16) 

f3 25 5×105 7.54e-29(6.73e-29) 8.33e-26(4.83e-28) 4.93e-36(4.65e-32) 3.27e-206(0.00e+0) 

100 5×106 1.66e-09(6.77e-10) 2.65e-12(3.36e-14) 6.99e-14(1.34e-16) 2.93e-14(1.43e-17) 

f4 25 5×105 8.36e-14(6.37e-13) 3.02e-14(1.37e-15) 4.99e-15(1.18e-14) 3.09e-53(8.76e-53) 

100 5×106 3.01e-12(3.26e-11) 3.70e-11(1.08e-13) 3.56e-14(4.55e-13) 4.14e-01(7.73e-02) 

f5 25 5×105 4.19e-08(3.36e-08) 7.83e-15(2.85e-15) 5.98e-23(1.00e-22) 1.70e-14(5.92e-15) 

100 5×106 7.66e-05(6.76e-05) 3.06e-12(5.12e-13) 8.52e-17(1.36e-15) 3.24e-14(3.23e-19) 

f6 25 5×105 6.83e-22(3.83e-25) 1.82e-28(7.68e-29) 2.99e-36(4.73e-35) 3.25e-03(4.76e-03) 

100 5×106 2.19e-10(8.45e-11) 8.95e-13(1.02e-14) 4.114e-15(6.02e-16) 7.39e-03(4.56e-03) 

f7 25 5×105 1.04e-03(8.04e-02) 6.73e-24(3.72e-21) 5.84e-25(5.33e-27) 0.00e+00(0.00e+00) 

100 5×106 2.11e-02(4.86e-03) 5.88e-21(4.83e-20) 1.77e-22(3.88e-20) 2.68e-13(3.87e-13) 

f8 25 5×105 7.09e-16(6.22e-15) 9.37e-24(6.19e-28) 7.20e-27(4.83e-28) 5.45e-32(1.40e-31) 

100 5×106 4.24e-10(2.96e-09) 2.84e-15(1.45e-14) 3.004e-18(4.82e-17) 8.53e-28(3.36e-27) 

 
TABLE 4 Comparison with State-of-the-art DEs 

Func. D Max FEs DE/rand/bin SADE DEGL/SAW This work 

Successful 

runs 

Mean no. 

of FEs 

Successful 

runs 

Mean no. 

of FEs 

Successful 

runs 

Mean no. 

of FEs 

Successful 

runs 

Mean no. 

of FEs 

f1 25 10−20 50 109372 50 104982  50 91935 50 20844 

100 10−20 50 687322 50 738720 50 498521 50 148446 

f2 25 10−20 50 356253 50 267319 50 338279 50 256350 

100 10−7 50 13398272 50 2844738 50 2709313 50 707487 

f3 25 10−20 50 266371 50 306742 50 157234 50 56258 

100 10−20 13 2034583 23 1257362 34 978357 50 441702 

f4 25 10−20 16 376291 17 292478 21 294812 50 394534 

100 10−20 14 3174782 17 3139382 25 2263976 0 - 

f5 25 10−12 14 226816 32 236290 50 224883 50 68485 

100 10−12 13 1873625 13 1065920 27 925628 50 280587 

f6 25 10−20 19 345328 50 316382 50 196258 38 205630 

100 10−20 5 1840322 34 1936287 43 1627092 34 2405721 

f7 25 10−20 19 345328 50 195823 50 87148 50 182844 

100 10−20 5 1840322 50 744938 50 539282 24 7237873 

f8 25 10−20 35 294584 50 126574 50 150039 50 42385 

100 10−20 8 3122658 20 1637409 27 1436190 50 200149 

 

We report here results for 25 and 100 dimensions in 

Table 3. Table 3 shows that the OEGA get 8 champions 

in terms of the quality of the final solutions. In order to 

compare the speeds of different algorithms, we select a 

threshold value of the objective function for each 

benchmark problem. Tables 4 reports the number of runs 

(out of 50) that managed to find the optimum solution 

(within the given tolerance) as well as the mean number 

of FEs required by the algorithms to converge within the 

prescribed threshold value. 

In addition, we compare the performance of the 

proposed approach with that of four state-of-the-art 

evolutionary and swarm-based optimization techniques, 

well-known as CPSO-H [16], IPOPCMA-ES [17], and 

G3 with PCX [4]. We employ the best parametric set-up 

for all these algorithms as prescribed in their respective 

sources. The mean and the standard deviation (within 

parentheses) of the best-of-run values of 50 independent 

runs for each algorithm have been presented in Table 5. 

We report only the hardest problem instances 

(multidimensional functions with D = 100) in Table 6. 
 

TABLE 5 Comparison with Other State-of-the-art EAs (MaxNoumber. ofFEsis5 × 106) 
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Func. D CPSO-H IPOP-CMAES G3 withPCX This work 

Mean best 

value 

Standard 

deviation 

Mean best 

value 

Standard 

deviation 

Mean best 

value 

Standard 

deviation 

Mean best 

value 

Standard 

deviation 

f1  6.56e-22 7.23e-28 9.68e-23 7.23e-26 2.80e-20 6.46e-14 1.10e-38 4.73e-23 

f2  1.50e-01 9.42e-01 6.04e-22 8.34e-24 5.77e-18 2.23e-19 8.65e-17 7.30e-22 

f3  7.41e-08 6.22e-07 2.74e-03 1.64e-07 2.65e-06 3.36e-10 2.93e-14 1.43e-17 

f4  6.51e-13 1.79e-16 1. 76e-12 4.94e-06 7.48e-13 3.77e-09 4.14e-01 7.73e-02 

f5  1.77e-12 1.79e-16 8.85e-17 4.94e-06 3.47e-10 7.14e-09 3.24e-14 3.23e-19 

f6  2.53e-02 7.22e-03 3.67e-14 6.93e-14 8.92e-11 8.15e-15 7.39e-03 4.56e-03 

f7  1.73e-01 4.09e-02 9.24e-21 4.32e-21 5.92e-03 3.77e-04 2.68e-13 3.87e-13 

f8  4.20e-10 6.95e-11 4.45e-19 3.63e-16 6.86e-04 8.03e-03 8.53e-28 3.36e-27 

 

A close inspection of Tables3, 4, and 5 indicate that 

the performance of the proposed approach has strong 

international competitiveness with other state-of-the-art 

EAs. 

 

4 Conclusions 

 

In this paper, we proposed a new framework of RCGA 

and a recombination operator that generates new solution 

towards a polygon field with k+1 vertexes representing 

promising points in search space, which is an attempt to 

balance explorative and an exploitive ability. An 

extensive performance comparison with five significant 

RCGAs variants, three state-of-the-art differential 

evolution algorithms and others three significant 

evolutionary computing techniques indicated that the 

proposed approaches enhance RCGA ability to accurately 

locate solutions in the search space. The empirical study 

showed the proposed OEGA is an efficiently scheme for 

solving parameter optimization problem. This, however, 

does not lead us to claim that the OEGA may outperform 

their contestants over every possible objective function 

since it is impossible to model all possible complexities 

of real-life optimization problems with the limited test-

suite that we used for testing the algorithms. 
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