## Real-coded genetic algorithm with oriented evolution towards promising region for parameter optimization

## Zhiqiang Chen<sup>1\*</sup>, Jiang Yun<sup>1</sup>, Xudong Chen<sup>2</sup>

<sup>1</sup>School of Computer Science and Information Engineering 125, Chongqing Technology and Business University, Chongqing, 400067, China

<sup>2</sup>Chongqing Engineering Laboratory for Detection Control and Integrated System, 19, Xuefu Avenue, Nan'an, Chongqing, 400067, China

Received 1 October 2014, www.cmnt.lv

#### Abstract

In this paper, a novel real-coded genetic algorithm is presented to generate offspring towards a promising polygon field with k+1 vertex, which represents a set of promising points in the entire population at a particular generation. A set of 19 test problems available in the global parameter optimization literature is used to test the performance of the proposed real-coded genetic algorithms. Several performance comparisons with five significant real-coded genetic algorithms, three state-of-the-art differential evolution algorithms and three others significant evolutionary computing techniques are performed. The comparative study shows the proposed approach is statistically significantly better than or at least comparable to twelve significant evolutionary computing techniques over a test suite of 19 benchmark functions.

Keywords: genetic algorithm, real-coded, oriented evolution, parameter optimization

#### **1** Introduction

Genetic algorithms (GAs), inspired by the natural evolution of species, have been successfully applied to solve numerous optimization problems in diverse fields. As powerful population-based stochastic search techniques, the popularity of GAs is based on simply solving multidimensional and multimodal optimization problems without requiring any additional information such as the gradient of an objective function. As one of the most intensively studies classes of global optimization over continuous spaces, in the recent past, a lot of effort has been put into the development of sophisticated recombination operators and framework of Real-coded GA (RCGA) for real parameter optimization [1-12].

Most of the population-based search algorithms try to balance between two contradictory aspects of their performance: exploration and exploitation. The first one means the ability of the algorithm to explore or search every region of the feasible search space, while the second denotes the ability to converge to the near-optimal solutions as quickly as possible [13,14]. Practical experience, however, shows that existing RCGAs still may occasionally stop proceeding toward the global optimum even though the population has not converged to a local optimum or any other point. Occasionally, even new individuals may enter the population, but the algorithm does not progress by finding any better solutions. In fact, it is impossible there is a general tractable algorithm that could efficiently and effectively solve all possible complexities of real-life optimization problems [14], which motivates researchers to develop better algorithms that yield better approximate solutions.

In the context, we develop a new real-coded genetic algorithm to attempt to make a balanced use of the exploration and exploitation abilities of the search mechanism and to be therefore more likely to avoid false or premature convergence in many cases. In the proposed algorithm, a promising polygon field with k+1 vertexes is defined, which represents a set of promising points in the entire population at a particular generation, and offspring is generated towards the centroid of the polygon field. We call the proposed RCGA as real-coded genetic algorithm with oriented evolution towards promising region (OEGA). In this paper, a set of 19 test problems available in the global optimization literature including unimodal, multimodal, parameter dependency, and ill-scale parameter optimization problems are used to evaluate the performance of OEGA. To further judge the performance the proposed approach, several performance of comparisons with five significant real-coded genetic algorithms [1,5,7,12], three state-of-the-art differential evolution algorithms [8,13,14] and three others significant evolutionary computing techniques are performed [4,16-18]. The comparative study shows the proposed approach is statistically significantly better than or at least comparable to several existing real-coded genetic algorithms as well as a few others significant evolutionary computing techniques over a test suite of 19 benchmark functions.

# 2 Real-coded genetic algorithm with oriented evolution towards promising region

#### 2.1 RECOMBINATION OPERATOR

<sup>\*</sup>Corresponding author's e-mail: chenzhiqiangcq@163.com

There exist EAs like DE/target-to-best/1 which uses the best individual of the population to generate offspring. By "best" we mean the individual that corresponds to the best fitness in the entire population at a particular generation. The scheme promotes exploitation since all the genomes are attracted towards the same best position on the fitness landscape through iterations, thereby converging faster to that point. But as a result of such exploitative tendency, in many cases, the population may lose its global exploration abilities within a relatively small number of generations, thereafter getting trapped to some locally optimal point in the search space. A proper trade-off between exploration and exploitation is necessary for the efficient and effective operation of a population-based stochastic search technique. In the context, we propose that the centroid of some promising region replace the "best" individual in the entire population at a particular generation, and the genomes of individual are attracted towards a polygon region with k+1 vertexes representing promising point in search space. Based on above idea, a new recombination operator is designed as follows:

$$\begin{aligned} X_{c} &= X_{p} + \omega (X_{g} - X_{p}) + \xi \left| X_{p} - X_{r} \right| \\ \omega &= diag \left( \omega_{1}^{t}, \omega_{2}^{t}, ..., \omega_{n}^{t} \right) \qquad , \end{aligned}$$
(1)  
$$\omega_{i}^{t} \in u(0,7)$$

$$\xi = \begin{cases} -b \log_{e}(r), & r \le \frac{1}{2} \\ b \log_{e}(r), & r > \frac{1}{2} \end{cases}$$
(2)

$$f(x) = \frac{1}{2b} \exp(-\frac{|x|}{b}),$$
 (3)

$$X_{g} = \frac{\sum_{i=1}^{k} X_{B,i} + X_{o}}{k+1},$$
(4)

where  $X_p$  and  $X_c$  represents parent and offspring, respectively.  $X_{B,i}$  is  $i^{th}$  best promising point.  $X_o$  is the champion found on the fitness landscape through iterations.  $X_r$  is an individual selected randomly from the mating pool  $P_M = \{X_{M,1}, ..., X_{M,N}\}$ . *t* is a parameter defined by user which decides the movement towards the promising search direction  $X_g - X_P \cdot \xi$  is a random generated number using Laplace(0, *b*) distribution with probability density function as Equation(4).*k*express *k* promising points from the mating pool  $P_M$ .

As in Equation (1), the first and second items decide the exploring direction; the third item strengthens the exploiting ability of the algorithm following the direction.

#### Chen Zhiqiang, Yun Jiang, Chen Xudong

The  $X_{B,i}$  in Equation (4) is obtained using following subprocedure:

SubStep1: Createmating pool  $P_M$  as follows:

Generate cluster  $C_i$  with  $C_s$  individuals selected randomly from the current population  $P_G$ ;

Assign the champion of cluster 
$$C_i$$
 to  $X_{M_i}$ 

End

SubStep2:Sort the mating pool  $P_M$ , k best individuals in the mating pool  $P_M$  are as  $X_{B,i}$  (i=1,2,...,k), respectively.

#### 2.2 GENERATION ALTERNATION MODEL

In order to further strengthen the exploring ability of the algorithm and increase the potential diversity of the population, we define a mutation behavior as follows: a solution is randomly selected from the population  $P_G$  and is mutated by given probability in each iteration. In this paper, we use MPTM (Makinen, periaux and toivanen mutation) mutation operator defined by Makinen et al. [11].

The detail of the proposed scheme is intertwined in the following manner:

Step 1. Set the generation number G=0 and randomly initialize a population  $P_G$  of  $N_P$  individuals, and each individual uniformly distributed in the range  $[X_{Min}, X_{Max}]$ .

Step 2. Create mating pool  $P_M = \{X_{M,1}, ..., X_{M,N}\}$ and obtain Promising Points Set  $X_{B,i}$  (i=1,2,...,k).

Step 3. Calculate the centroid  $X_g$  of the polygon formed by the promising points using Equation (3).

Step 4. Selectrandomly $N_c$ individuals  $(X_{p,1},..., X_{p,N_c})$  from the mating pool  $P_M$ and generate  $N_c$  offspring  $X_c = \{X_{c,1},..., X_{c,N_c}\}$ usingEquation (1).

Step 5. Evaluate  $X_c$ .

Step 6. Replace randomly an individual of the population  $P_G$  using the best offspring  $X_{best}$  in the  $X_c$  in the fitness landscape.

Step 7. Mutate an individual selected randomly from the population  $P_G$  using MPTM mutation operator by probability  $r_M$ .

Step 8. G=G+1, repeat Step 2~Step 7 until the stopping criterion is not satisfied.

### **3Simulations**

#### 3.1 TEST BED

We used a test-bed of 19 traditional benchmark functions including unimodal, multimodal, parameter dependency,

and ill-scale parameter optimization problems. The 19 traditional benchmarks have been reported in the following where D represents the number of dimensions D=25 to 100. They apparently belong to the difficult class of problems for many optimization algorithms.

1. Sphere function  $(f_1)$ 

$$f(x) = \sum_{i=1}^{n} x_i^2,$$
  
-5.12 \le x\_i \le 5.12, x\* = (0,0,...,0), f(x\*) = 0.

2.Rosenbrock function ( $f_2$ )

$$f(x) = \sum_{i=2}^{n} (100 (x_1 - x_i^2)^2 + (1 - x_i)^2),$$
  
- 2.048 \le x\_i \le 2.048, x\* = (0,0,...,0), f(x\*) = 0.

3.Schewefel problem 3 ( $f_3$ )

$$\min_{x} f(x) = \sum_{i=1}^{n} |x_{i}| + \prod_{i=1}^{n} |x_{i}|,$$
  
-10 \le x\_{i} \le 10, x<sup>\*</sup> = (0,0,...,0) and f(x<sup>\*</sup>) = 0

4.Schewefel problem 4 ( $f_4$ )

$$\min_{x} f(x) = \max_{x} \{ | x_i |, 1 \le i \le n \}, 
-100 \le x_i \le 100, x^* = (0, 0, ..., 0) and f(x^*) = 0.$$

5. Ackley's problem ( $f_5$ )

$$\min_{x} f(x) = -20 \exp(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}})$$
  
-  $\exp(\frac{1}{n}\sum_{i=1}^{n}\cos(2\pi x_{i})) + 20 + e,$   
-  $30 \le x_{i} \le 30, \ x^{*} = (0,0,...,0) and \ f(x^{*}) = 0$ 

6. Griewank problem ( $f_6$ )

$$\min_{x} f(x) = 1 + \frac{1}{4000} \sum_{i=1}^{n} x_{i}^{2} - \prod_{i=1}^{n} \cos(\frac{x_{i}}{\sqrt{i}}), 
- 600 \le x_{i} \le 600, \ x^{*} = (0, 0, ..., 0) and f(x^{*}) = 0.$$

7.Rastrigin function ( $f_7$ )

$$f(x) = 10 n + \sum_{i=1}^{n} (x_i^2 - 10 \cos(2\pi x_i)) ,$$
  
- 5.12 \le x\_i \le 5.12, x\* = (0,0,...,0), f(x\*) = 0

8. Generalized penalized function 1 (  $f_8$  )

## Chen Zhiqiang, Yun Jiang, Chen Xudong

$$\min_{x} f(x) = \frac{1}{n} (10 \sin^{2} (\pi y_{1}) + \sum_{i=1}^{n-1} (y_{i} - 1)^{2} [1 + 10 \sin^{2} (\pi y_{i+1})] +$$

$$(y_{n} - 1)^{2}) + \sum_{i=1}^{n} u(x_{i}, 10, 100, 4),$$

$$-10 \le x_{i} \le 10, \ x^{*} = (0, 0, ..., 0) \ and \ f(x^{*}) = 0.$$
(9)

 $\pi$ 

9. Generalized penalized function 2 (  $f_9$  )

$$\begin{split} \min_{x} f(x) &= 0.1 (\sin^{2} (3\pi x_{1}) + \\ \sum_{i=1}^{n-1} (x_{i} - 1)^{2} [1 + \sin^{2} (3\pi x_{i+1})] + \\ (x_{n} - 1)^{2} ) [1 + \sin^{2} (2\pi x_{n})] + \\ \sum_{i=1}^{n} u(x_{i}, 10, 100, 4), \\ -5 &\leq x_{i} \leq 5, \ x^{*} = (0, 0, ..., 0) \ and \ f(x^{*}) = 0. \end{split}$$

In the problem 17 and 18, the penalty function u is given by the following expression:

$$u(x, a, k, m) = \begin{cases} k * pow ((x - a), m) & \text{if } x > a, \\ -k * pow ((x - a), m) & \text{if } x < -a, \\ 0 & \text{oyherwise} \end{cases}$$

10. Ellipsoid function 
$$(f_{10})$$
  
 $f(x) = \sum_{i=1}^{n} (1000^{i-1/n-1} x_i)^2,$   
 $-5.12 \le x_i \le 5.12, x^* = (0,0,...,0), f(x^*) = 0.$   
11.k-tablet function  $(f_{11})$ 

$$f(x) = \sum_{i=1}^{n} x_i^{-} + \sum_{i=k+1}^{n} (100 x_i)^{-},$$
  
-5.12 \le x\_i \le 5.12, x<sup>\*</sup> = (0,0,...,0), f(x<sup>\*</sup>) = 0.

12. Axis parallel hyper ellipsoid ( $f_{12}$ )

$$\min_{x} f(x) = \sum_{i=1}^{n} ix_{i}^{2},$$
  
-5.12 \le x<sub>i</sub> \le 5.12, x<sup>\*</sup> = (0,0,...,0) and f(x<sup>\*</sup>) = 0.

13.Zakharow's function ( $f_{13}$ )

$$\min_{x} f(x) = \sum_{i=1}^{n} x_{i}^{2} + \left(\sum_{i=1}^{n} \frac{i}{2} x_{i}\right)^{2} + \left(\sum_{i=1}^{n} \frac{i}{2} x_{i}\right)^{4},$$

$$- 5.12 \le x_{i} \le 5.12, \ x^{*} = (0, 0, ..., 0) \text{ and } f(x^{*}) = 0.$$

14. Exponential problem ( $f_{14}$ )

#### Chen Zhiqiang, Yun Jiang, Chen Xudong

$$\min_{x} f(x) = -\exp(0.5\sum_{i=1}^{n} x_{i}^{2}),$$
  
-1 \le x\_{i} \le 1, x<sup>\*</sup> = (0,0,...,0) and f(x<sup>\*</sup>) = -1.

15. Ellipsoidal function ( $f_{15}$ )

$$\min_{x} f(x) = \sum_{i=1}^{n} (x_{i} - i)^{2},$$
  
-  $n \le x_{i} \le n, x^{*} = (1, 2, ..., n) and f(x^{*}) = 0.$ 

16. Cosine mixture problem ( $f_{16}$ )

$$\min_{x} f(x) = \sum_{i=1}^{n} x_{i}^{2} - 0.1 \sum_{i=1}^{n} \cos(5\pi x_{i}),$$
$$-1 \le x_{i} \le 1, \ x^{*} = (0, 0, ..., 0) \text{ and } f(x^{*}) = -0.1n.$$

17. Levy and Montalvo problem 1 ( $f_{17}$ )

$$\min_{x} f(x) = \frac{\pi}{n} (10 \sin^{2}(\pi y_{1}) + \sum_{i=1}^{n-1} (y_{i} - 1)^{2} [1 + 10 \sin^{2}(\pi y_{i+1})] (y_{n} - 1)^{2}),$$
  
where  $y_{i} = 1 + \frac{1}{4} (x_{i} + 1),$   
 $-10 \le x_{i} \le 10, x^{*} = (0, 0, ..., 0) and f(x^{*}) = 0.$ 

18.Bohachevsky function ( $f_{18}$ )

$$f(x) = \sum_{i=1}^{n-1} (x_i^2 + 2x_{i+1}^2 - 0.3\cos(3\pi x_i) - 0.4\cos(4\pi x_{i+1}) + 0.7),$$
  
- 5.12 \le x<sub>i</sub> \le 5.12, x<sup>\*</sup> = (0,0,...,0), f(x<sup>\*</sup>) = 0.

19. Schaffer function ( $f_{19}$ )

 $f(x) = \sum_{i=1}^{n-1} [(x_i^2 + x_{i+1}^2)^{0.25} \times (\sin^2 (50(x_i^2 + x_{i+1}^2)^{0.1}) + 1.0)],$ -100 \le x\_i \le 100, x\* = (0,0,...,0), f(x\*) = 0.

#### **3.2PARAMETERS SETTING**

Finding the most appropriate combination of parameters occurring in an EA is termed as parameter tuning and is considered to be the most important and perhaps most difficult task. This difficulty also increases as we take larger and larger test suit into consideration because of multimodality and nonlinearity of different kind of objective functions. It becomes very challenging to suggest common fixed values of various parameters for the entire suit. To achieve this goal, we have carried out extensive experiments for the proposed OEGA approach. There exist eight important parameters in the proposed approach. Extensive experiments showed that the choice of numerical values for the three control parameters  $N_p$ , k and b highly depends on the problem under consideration. The varying of k is sensitive to the performance of the proposed approach and only when k is set to 2 or larger for the multimodal function, excellent results can be obtained.  $N_p$  is recommended to set as in Table 1. Other control parameters are set as follows:

 $C_s$ : the size of Cluster  $C_i$  is set 10 for  $f_2$  and  $f_{12}$ , 15 for other problems.

 $N_M$ : the size of Mating pool  $P_M$ , 20 for all the problems.

 $N_C$ : the number of offspring generated in each generation, 2 for all the problems.

*k*: the number of Promising Points from the mating pool  $P_M$ , 1 for  $f_2 \sim f_4$  and  $f_{12}$ ; 2 for  $f_1$ ,  $f_7 \sim f_{11}$  and  $f_{15}$ ; 3 for  $f_5$ ,  $f_6$ ,  $f_{14}$ ,  $f_{16}$ ,  $f_{18}$  and  $f_{19}$ ; 4 for  $f_{10}$ .

*t*: the parameter deciding the movement towards the promising search direction  $X_g - X_p$ , set 2.5 for all the problem.

*b*: the parameter of Laplace(0, *b*) distribution of  $\xi$  in Equation (1), 0.5 for  $f_5 \sim f_7$ ,  $f_{16}$ ,  $f_{17}$  and  $f_{19}$ , 0.1 for other problems.

 $r_M$ : The mutation ratio of each gene of the individual selected from the population  $P_G$ , 0.005 for all the problems.

#### 3.3 EXPERIMENTAL EVALUTION OF OEGA

In this subsection, we perform a serial of experiments to evaluate the performance of the proposed approach. The study focuses on three important aspects of OEGA: 1) The speed of convergence measured in terms of the number of FEs required by an algorithm to reach a predefined threshold value of the objective function; 2) the frequency of hitting the optima (or success rate) measured in terms of the number of runs of an algorithm that converge to a threshold value within a predetermined number of FEs; 3) the issue of scalability, i.e., how the performance of an algorithm changes with the growth of the search-space dimensionality. The dimension of the variable in the entire problems is fixed to 30, 50 and 100, respectively. The number of FEs required by OEGA to reach two predefined thresholds (  $10^{\ -7}$  and  $10^{\ -20}$  ) are reported for all the problems with different dimensionality. A lower number of FEs corresponds to a faster algorithm. 25 independent runs are carried out for every problem. It is considered to be successful if a run achieves to reach the predefined threshold. A run is terminated before reaching the max number of function evaluations if the error value  $f(x) - f(x^*)$  is less than the

#### Chen Zhiqiang, Yun Jiang, Chen Xudong

given accuracy, where  $x^*$  is the global optimal solution.

These experimental results are reported inTable 1.

| Fune  | D   | N    | Threshold value=10 <sup>-7</sup> Threshold value=10 <sup>-20</sup> |                   |            |                |                   | 0-20          |
|-------|-----|------|--------------------------------------------------------------------|-------------------|------------|----------------|-------------------|---------------|
| Func. | U   | INP  | 1                                                                  | nresnoid value=10 |            |                | Inresnoid value=1 | 10            |
|       |     |      | Least No.of FEs                                                    | MostNo.of FEs     | Mean No.of | LeastNo.of FEs | MostNo.of FEs     | MeanNo.of FEs |
| f1    | 30  | 300  | 13667                                                              | 18414             | 15930      | 31658          | 35934             | 33821         |
|       | 50  | 300  | 27132                                                              | 33484             | 29963      | 58458          | 69304             | 63644         |
|       | 100 | 300  | 74798                                                              | 117690            | 85161      | 166282         | 196968            | 180516        |
| f2    | 30  | 1500 | 95870                                                              | 238682            | 157541     | -              | -                 | -             |
|       | 50  | 2000 | 287140                                                             | 472328            | 351757     | -              | -                 | -             |
|       | 100 | 2000 | 1151432                                                            | 2191700           | 1594944    | -              | -                 | -             |
| f3    | 30  | 600  | 21584                                                              | 42354             | 27405      | 56644          | 83610             | 64310         |
|       | 50  | 900  | 59036                                                              | 97336             | 75074      | 142442         | 181312            | 162638        |
|       | 100 | 1500 | 307474                                                             | 414642            | 358309     | 669412         | 764318            | 712000        |
| f4    | 30  | 1500 | 306260                                                             | 428714            | 358330     | 697338         | 876414            | 805848        |
|       | 50  | 1500 | 845512                                                             | 1042796           | 903468     | 3501782        | 4559988           | 3998598       |
| f5    | 30  | 500  | 26174                                                              | 45170             | 29816      | -              | -                 | -             |
|       | 50  | 500  | 48272                                                              | 76194             | 57879      | -              | -                 | -             |
|       | 100 | 500  | 146430                                                             | 212110            | 183115     | -              | -                 | -             |
| f6    | 30  | 1200 | 35704                                                              | 43056             | 37843      | 65480          | 79980             | 68213         |
|       | 50  | 1500 | 68644                                                              | 74314             | 71494      | 121812         | 129070            | 125080        |
|       | 100 | 1500 | 151066                                                             | 1791544           | 288506     | 250666         | 785878            | 303656        |
| f7    | 30  | 900  | 84150                                                              | 177304            | 123383     | 89918          | 205892            | 132924        |
|       | 50  | 900  | 178824                                                             | 285420            | 233555     | 176856         | 382173            | 278499        |
|       | 100 | 900  | 357528                                                             | 724248            | 494553     | 494403         | 857538            | 625887        |
| f8    | 30  | 900  | 28770                                                              | 45252             | 31091      | 67088          | 73516             | 70182         |
|       | 50  | 900  | 51368                                                              | 84354             | 57203      | 121776         | 165420            | 128353        |
|       | 100 | 900  | 137224                                                             | 173442            | 155648     | 308682         | 343656            | 328863        |
| f9    | 30  | 900  | 29808                                                              | 89276             | 36641      | 68240          | 126626            | 74496         |
|       | 50  | 900  | 56844                                                              | 334126            | 81253      | 124422         | 166828            | 133784        |
|       | 100 | 900  | 152898                                                             | 555424            | 187582     | 323362         | 1665574           | 405156        |
| f10   | 30  | 300  | 17378                                                              | 22128             | 19021      | 35386          | 41102             | 37144         |
|       | 50  | 300  | 33530                                                              | 42050             | 37270      | 65048          | 81990             | 71798         |
|       | 100 | 300  | 92982                                                              | 114422            | 104428     | 183222         | 229982            | 201363        |
| f11   | 30  | 300  | 14768                                                              | 18126             | 16404      | 31692          | 35582             | 34061         |
|       | 50  | 300  | 27676                                                              | 32724             | 30223      | 60282          | 72942             | 64657         |
|       | 100 | 300  | 75770                                                              | 99476             | 84809      | 166222         | 203192            | 181933        |
| f12   | 30  | 300  | 13304                                                              | 19458             | 15456      | 29570          | 38042             | 32332         |
|       | 50  | 500  | 41568                                                              | 56590             | 47634      | 88800          | 111102            | 97083         |
| 01.0  | 100 | 1000 | 211436                                                             | 304718            | 260608     | 485964         | 597608            | 522285        |
| f13   | 30  | 900  | 196522                                                             | 407390            | 293392     | 337262         | 495984            | 427207        |
| 04.4  | 50  | 2400 | 1389/26                                                            | 2048508           | 16/0813    | 2320800        | 3203268           | 2626230       |
| 114   | 30  | 900  | 15124                                                              | 1/994             | 16616      | 42350          | 120072            | /1645         |
|       | 50  | 900  | 26994                                                              | 33302             | 29149      | 158456         | 1197380           | 410/18        |
| 61.5  | 100 | 900  | 64270                                                              | /8006             | 69590      | -              | -                 | -             |
| 115   | 30  | 300  | 13270                                                              | 16296             | 14858      | 30638          | 36900             | 34305         |
|       | 50  | 300  | 27304                                                              | 57542             | 32038      | 05752          | 79014             | 70992         |
| £1 (  | 100 | 500  | 91856                                                              | 145118            | 106267     | 218330         | 25282             | 283138        |
| 110   | 50  | 500  | 12380                                                              | 15580             | 14031      | 50124          | 35282             | 52015         |
|       | 50  | 500  | 23390                                                              | 30458             | 25801      | 57440          | 00430             | 61418         |
| 61.7  | 20  | 1200 | 00/10                                                              | 92012             | 71000      | 103948         | 3/8112            | 191885        |
| 117   | 50  | 1200 | 22996                                                              | 42302             | 23403      | 08034          | 120078            | /00/8         |
|       | 100 | 1200 | 41258                                                              | 130400            | 215241     | 120030         | 430332            | 101421        |
| £10   | 100 | 1200 | 108438                                                             | 946430            | 215241     | 335740         | 00/854            | 413/30        |
| 118   | 50  | 900  | 24568                                                              | 2/414             | 20194      | 42934          | 49088             | 4004 /        |
|       | 100 | 900  | 42000                                                              | 122009            | 49439      | 176092         | 97038             | 200075        |
| £10   | 30  | 1500 | 167164                                                             | 132908            | 172035     | 37/626         | 384600            | 370528        |
| -119  | 50  | 2000 | 10/104                                                             | 716374            | 175010     | 95/182         | 100/66/           | 1054012       |
|       | 50  | 2000 | 442200                                                             | /105/4            | 400930     | 954102         | 1904004           | 1034012       |

#### TABLE 1 Number of FEs achieving the fixed accuracy level using OSGA

As shown in Table 1, the proposed OEGA is enable to solve efficiently the function optimization with ill-scale, strong dependence among variables or multi-model. The proposed approach almost achieves the accuracy level  $10^{-7}$  for all the tested problems except  $f_4$  and  $f_{19}$  of D=100,  $10^{-20}$  for all the tested problems except  $f_2$  and  $f_5$ . Performance of most of the evolutionary algorithms deteriorates with the growth of the

dimensionality of the search space. Increase of dimensions implies a rapid growth of the hyper volume of the search space and this in turn slows down the convergence speed of most of the global optimizers. Table 1 show the proposed approach can efficiently solve all the problem of D=100 except  $f_4$  and  $f_{19}$ .

#### 3.4 COMPARISIO WITH OTHER STATE-OF-THE-ART EVOLUTIONARY TECHNIQUES

In this subsection we compare the performance of OEGA with other State-of-the-Art Evolutionary Techniques. Genetic Algorithms (GA) are perhaps the most popular Evolutionary Algorithms for optimization problems in diverse fields. Five real-codedGAs (JGG+ $REX^{star}$ [1], *rc*-CGA+FDPP-LX [5], *rc*-CGA+BLX- $\alpha$ [7], MMG+BLX- $\alpha$ [7], SGA+LX-MPTM [12]) are employed to compare with the OEGA. JGG+JGG+ $REX^{star}$ , one of the excellent Real-coded GAs, can solve more efficiently real parameter optimization problems of multimodality, parameter dependency, and ill-scale. *rc*-CGA+FDPP-LX and *rc*-CGA+BLX- $\alpha$ re two efficient and effective Real-

#### Chen Zhiqiang, Yun Jiang, Chen Xudong

coded GAs for parameter optimization problems. MMG is a commonly-used steady-state model originally and BLX-αcrossover is a classical crossover operator for real-MGG+BLX-apresented coded GA. excellent performance for parameter optimization of unimodality and multimodality. SGA+LX-MPTM is a simple genetic algorithm model with tournament selection and a crossover operator with Laplace distribution. We compare the number of FEs required by using algorithm to reach a predefined threshold value  $10^{-7}$  of the objective function D=30. The parameter settings JGG+*REX*<sup>star</sup>, *rc*-CGA+FDPP-LX, *rc*-CGA+BLX- $\alpha$ , MMG+BLX-a, SGA+LX are kept same as [5] and [7]. The initial population cover the entire search space as much as possible by uniformly randomizing individuals within the search space constrained by the prescribed minimum and maximum parameter bounds. Mean Number of FEs required reaching predefined threshold value  $10^{-7}$  for 50 independent runs of each of the six contestant algorithms are presented in Table 2.

TABLE 2 Comparison with State-of-the-art Real-Coded GAs

| Func. | Threshold        | Mean Number of FEs required to reach predefined threshold value |         |                         |                |           |  |  |  |
|-------|------------------|-----------------------------------------------------------------|---------|-------------------------|----------------|-----------|--|--|--|
|       | value            | rc-CGA+BLX                                                      | MMG+BLX | JGG+REX <sup>star</sup> | rc-CGA+FDPP-LX | This work |  |  |  |
| f1    | 10 <sup>-7</sup> | 13667                                                           | 56545   | 16159                   | 12657          | 15930     |  |  |  |
| f2    | 10 <sup>-7</sup> | -                                                               | -       | 90832                   | 340453         | 157541    |  |  |  |
| f3    | 10 <sup>-7</sup> | 34765                                                           | 96504   | 35674                   | 48654          | 27405     |  |  |  |
| f4    | 10 <sup>-7</sup> | 101235                                                          | 1794678 | 84745                   | 250278         | 358330    |  |  |  |
| f5    | 10 <sup>-7</sup> | 38836                                                           | 106564  | 32565                   | 74654          | 29816     |  |  |  |
| f6    | $10^{-7}$        | 19943                                                           | 124587  | 44165                   | 44767          | 37843     |  |  |  |
| f7    | $10^{-7}$        | 227567                                                          | 7606534 | 280342                  | 240678         | 123383    |  |  |  |
| f8    | $10^{-7}$        | 42312                                                           | 48565   | 14576                   | 19256          | 31091     |  |  |  |
| f9    | $10^{-7}$        | 61732                                                           | 51643   | 23454                   | 76754          | 36641     |  |  |  |
| f10   | $10^{-7}$        | 16854                                                           | 77143   | 25054                   | 37554          | 19021     |  |  |  |
| f11   | 10 <sup>-7</sup> | 26012                                                           | 77532   | 27012                   | 41842          | 16404     |  |  |  |
| f12   | $10^{-7}$        | 19854                                                           | 61967   | 17845                   | 19956          | 15456     |  |  |  |
| f13   | 10 <sup>-7</sup> | 343245                                                          | 215324  | 234124                  | 147342         | 293392    |  |  |  |
| f14   | 10 <sup>-7</sup> | 11786                                                           | 45268   | 14453                   | 10832          | 16616     |  |  |  |
| f15   | $10^{-7}$        | 93012                                                           | 71935   | 20546                   | 25235          | 14858     |  |  |  |
| f16   | $10^{-7}$        | 14243                                                           | 55012   | 25013                   | 23532          | 14031     |  |  |  |
| f17   | 10 <sup>-7</sup> | 76732                                                           | 98432   | 27021                   | 55754          | 25465     |  |  |  |
| f18   | 10 <sup>-7</sup> | 27412                                                           | 66443   | 39756                   | 39754          | 26194     |  |  |  |
| f19   | $10^{-7}$        | 58120                                                           | 383345  | 186431                  | 590567         | 173016    |  |  |  |

As shown in bold in Table 2, the OEGA get 12 champion in term of the mean Number of FEs required reaching predefined threshold. A close inspection of Table 2 indicates that the performance of the proposed approach has remained clearly and consistently superior to that of the two classical real-coded GA schemes (MMG+BLX- $\alpha$ and SGA+LX-MPTM) as well as the other three state-of-the-art Real-code GAs.

Differential Evolution (DE) [8] is a simple yet powerful algorithm for real parameter optimization. To further evaluate the performance of the proposed approach, we also compare the proposed OEGA with three DE variants (DE/rand/bin [8], SADE [13], and DEGL/SAW [14]. Among the competitors, DE/rand/bin belongs to the classical DE family. SADE, and DEGL/SAW are state-of-the-art DE variants. Eight classical problems ( $f_1 \sim f_8$ ) are selected as test suite to obtain a comparative performance with DE variants, which were also used to test the performance of the family of DEs in [14]. To make the comparison fair, we use the same method of initialization as in [14]: asymmetrical initialization reported in [15].

Asymmetrical initialization limits the initial process to just a portion of the feasible search space, which is a region defined to be half the distance from the maximum point along each axis back toward the origin. By contrast, symmetrical initialization is uniformly distributed about the entire search space.

The comparative study focuses on the quality of the final solutions produced by each algorithm and the speed of convergence measured in terms of the number of FEs required by an algorithm to reach a predefined threshold value of the objective function. To judge the accuracy of different approaches, we first let each of them run for a very long time over every benchmark function, until the number of FEs exceeds a given upper limit (which was fixed depending on the complexity of the problem). The mean and the standard deviation (within parentheses) of the best-of-run values for 50 independent runs of each of the five algorithms are presented in Table 3.

#### TABLE 3 Comparison with State-of-the-art DEs

| Func. | D   | Max               | Mean best value (Standard deviation) |                    |                     |                     |  |  |  |  |
|-------|-----|-------------------|--------------------------------------|--------------------|---------------------|---------------------|--|--|--|--|
|       |     | FEs               | DE/rand/bin                          | SADE               | DEGL/SAW            | This work           |  |  |  |  |
| f1    | 25  | 5×10 <sup>5</sup> | 6.85e-29(4.98e-23)                   | 4.04e-35(3.91e-32) | 8.78e-37(3.82e-35)  | 9.44e-321(0.00e+00) |  |  |  |  |
|       | 100 | $5 \times 10^{6}$ | 8.47e-24(4.66e-22)                   | 5.84e-24(3.82e-23) | 3.67e-25(4.73e-23)  | 1.10e-38(5.39e-38)  |  |  |  |  |
| f2    | 25  | $5 \times 10^{5}$ | 9.83e-23(4.83e-24)                   | 5.64e-26(9.36e-24) | 6.89e-25(6.87e-21)  | 3.34e-23(5.99e-23)  |  |  |  |  |
|       | 100 | $5 \times 10^{6}$ | 8.45e-05(2.74e-05)                   | 8.64e-25(3.78e-24) | 1.27e-15(7.72e-16)  | 8.65e-17(3.35e-16)  |  |  |  |  |
| f3    | 25  | 5×10 <sup>5</sup> | 7.54e-29(6.73e-29)                   | 8.33e-26(4.83e-28) | 4.93e-36(4.65e-32)  | 3.27e-206(0.00e+0)  |  |  |  |  |
|       | 100 | $5 \times 10^{6}$ | 1.66e-09(6.77e-10)                   | 2.65e-12(3.36e-14) | 6.99e-14(1.34e-16)  | 2.93e-14(1.43e-17)  |  |  |  |  |
| f4    | 25  | 5×10 <sup>5</sup> | 8.36e-14(6.37e-13)                   | 3.02e-14(1.37e-15) | 4.99e-15(1.18e-14)  | 3.09e-53(8.76e-53)  |  |  |  |  |
|       | 100 | $5 \times 10^{6}$ | 3.01e-12(3.26e-11)                   | 3.70e-11(1.08e-13) | 3.56e-14(4.55e-13)  | 4.14e-01(7.73e-02)  |  |  |  |  |
| f5    | 25  | 5×10 <sup>5</sup> | 4.19e-08(3.36e-08)                   | 7.83e-15(2.85e-15) | 5.98e-23(1.00e-22)  | 1.70e-14(5.92e-15)  |  |  |  |  |
|       | 100 | $5 \times 10^{6}$ | 7.66e-05(6.76e-05)                   | 3.06e-12(5.12e-13) | 8.52e-17(1.36e-15)  | 3.24e-14(3.23e-19)  |  |  |  |  |
| f6    | 25  | 5×10 <sup>5</sup> | 6.83e-22(3.83e-25)                   | 1.82e-28(7.68e-29) | 2.99e-36(4.73e-35)  | 3.25e-03(4.76e-03)  |  |  |  |  |
|       | 100 | $5 \times 10^{6}$ | 2.19e-10(8.45e-11)                   | 8.95e-13(1.02e-14) | 4.114e-15(6.02e-16) | 7.39e-03(4.56e-03)  |  |  |  |  |
| f7    | 25  | 5×10 <sup>5</sup> | 1.04e-03(8.04e-02)                   | 6.73e-24(3.72e-21) | 5.84e-25(5.33e-27)  | 0.00e+00(0.00e+00)  |  |  |  |  |
|       | 100 | $5 \times 10^{6}$ | 2.11e-02(4.86e-03)                   | 5.88e-21(4.83e-20) | 1.77e-22(3.88e-20)  | 2.68e-13(3.87e-13)  |  |  |  |  |
| f8    | 25  | 5×10 <sup>5</sup> | 7.09e-16(6.22e-15)                   | 9.37e-24(6.19e-28) | 7.20e-27(4.83e-28)  | 5.45e-32(1.40e-31)  |  |  |  |  |
|       | 100 | $5 \times 10^{6}$ | 4.24e-10(2.96e-09)                   | 2.84e-15(1.45e-14) | 3.004e-18(4.82e-17) | 8.53e-28(3.36e-27)  |  |  |  |  |

TABLE 4 Comparison with State-of-the-art DEs

| Func. | D   | Max FEs           | DE/rand/bin |          | SADE       |          | DEGL/SAW   |          | This work  |          |
|-------|-----|-------------------|-------------|----------|------------|----------|------------|----------|------------|----------|
|       |     |                   | Successful  | Mean no. | Successful | Mean no. | Successful | Mean no. | Successful | Mean no. |
|       |     |                   | runs        | of FEs   | runs       | of FEs   | runs       | of FEs   | runs       | of FEs   |
| f1    | 25  | $10^{-20}$        | 50          | 109372   | 50         | 104982   | 50         | 91935    | 50         | 20844    |
|       | 100 | $10^{-20}$        | 50          | 687322   | 50         | 738720   | 50         | 498521   | 50         | 148446   |
| f2    | 25  | $10^{-20}$        | 50          | 356253   | 50         | 267319   | 50         | 338279   | 50         | 256350   |
|       | 100 | 10 <sup>-7</sup>  | 50          | 13398272 | 50         | 2844738  | 50         | 2709313  | 50         | 707487   |
| f3    | 25  | $10^{-20}$        | 50          | 266371   | 50         | 306742   | 50         | 157234   | 50         | 56258    |
|       | 100 | $10^{-20}$        | 13          | 2034583  | 23         | 1257362  | 34         | 978357   | 50         | 441702   |
| f4    | 25  | $10^{-20}$        | 16          | 376291   | 17         | 292478   | 21         | 294812   | 50         | 394534   |
|       | 100 | $10^{-20}$        | 14          | 3174782  | 17         | 3139382  | 25         | 2263976  | 0          | -        |
| f5    | 25  | 10 <sup>-12</sup> | 14          | 226816   | 32         | 236290   | 50         | 224883   | 50         | 68485    |
|       | 100 | 10 <sup>-12</sup> | 13          | 1873625  | 13         | 1065920  | 27         | 925628   | 50         | 280587   |
| f6    | 25  | $10^{-20}$        | 19          | 345328   | 50         | 316382   | 50         | 196258   | 38         | 205630   |
|       | 100 | $10^{-20}$        | 5           | 1840322  | 34         | 1936287  | 43         | 1627092  | 34         | 2405721  |
| f7    | 25  | $10^{-20}$        | 19          | 345328   | 50         | 195823   | 50         | 87148    | 50         | 182844   |
|       | 100 | $10^{-20}$        | 5           | 1840322  | 50         | 744938   | 50         | 539282   | 24         | 7237873  |
| f8    | 25  | $10^{-20}$        | 35          | 294584   | 50         | 126574   | 50         | 150039   | 50         | 42385    |
|       | 100 | $10^{-20}$        | 8           | 3122658  | 20         | 1637409  | 27         | 1436190  | 50         | 200149   |

We report here results for 25 and 100 dimensions in Table 3. Table 3 shows that the OEGA get 8 champions in terms of the quality of the final solutions. In order to compare the speeds of different algorithms, we select a threshold value of the objective function for each benchmark problem. Tables 4 reports the number of runs (out of 50) that managed to find the optimum solution (within the given tolerance) as well as the mean number of FEs required by the algorithms to converge within the prescribed threshold value. In addition, we compare the performance of the proposed approach with that of four state-of-the-art evolutionary and swarm-based optimization techniques, well-known as CPSO-H [16], IPOPCMA-ES [17], and G3 with PCX [4]. We employ the best parametric set-up for all these algorithms as prescribed in their respective sources. The mean and the standard deviation (within parentheses) of the best-of-run values of 50 independent runs for each algorithm have been presented in Table 5. We report only the hardest problem instances (multidimensional functions with D = 100) in Table 6.

TABLE 5 Comparison with Other State-of-the-art EAs (MaxNoumber. of FEsis5  $\times$  10<sup>6</sup>)

#### Chen Zhiqiang, Yun Jiang, Chen Xudong

Chen Zhiqiang, Yun Jiang, Chen Xudong

| Func. | D | CPSO-H    |           | IPOP-CMAES |           | G3 withPCX |           | This work |           |
|-------|---|-----------|-----------|------------|-----------|------------|-----------|-----------|-----------|
|       |   | Mean best | Standard  | Mean best  | Standard  | Mean best  | Standard  | Mean best | Standard  |
|       |   | value     | deviation | value      | deviation | value      | deviation | value     | deviation |
| f1    |   | 6.56e-22  | 7.23e-28  | 9.68e-23   | 7.23e-26  | 2.80e-20   | 6.46e-14  | 1.10e-38  | 4.73e-23  |
| f2    |   | 1.50e-01  | 9.42e-01  | 6.04e-22   | 8.34e-24  | 5.77e-18   | 2.23e-19  | 8.65e-17  | 7.30e-22  |
| f3    |   | 7.41e-08  | 6.22e-07  | 2.74e-03   | 1.64e-07  | 2.65e-06   | 3.36e-10  | 2.93e-14  | 1.43e-17  |
| f4    |   | 6.51e-13  | 1.79e-16  | 1.76e-12   | 4.94e-06  | 7.48e-13   | 3.77e-09  | 4.14e-01  | 7.73e-02  |
| f5    |   | 1.77e-12  | 1.79e-16  | 8.85e-17   | 4.94e-06  | 3.47e-10   | 7.14e-09  | 3.24e-14  | 3.23e-19  |
| f6    |   | 2.53e-02  | 7.22e-03  | 3.67e-14   | 6.93e-14  | 8.92e-11   | 8.15e-15  | 7.39e-03  | 4.56e-03  |
| f7    |   | 1.73e-01  | 4.09e-02  | 9.24e-21   | 4.32e-21  | 5.92e-03   | 3.77e-04  | 2.68e-13  | 3.87e-13  |
| f8    |   | 4.20e-10  | 6.95e-11  | 4.45e-19   | 3.63e-16  | 6.86e-04   | 8.03e-03  | 8.53e-28  | 3.36e-27  |

A close inspection of Tables3, 4, and 5 indicate that the performance of the proposed approach has strong international competitiveness with other state-of-the-art EAs.

#### **4** Conclusions

In this paper, we proposed a new framework of RCGA and a recombination operator that generates new solution towards a polygon field with k+1 vertexes representing promising points in search space, which is an attempt to balance explorative and an exploitive ability. An extensive performance comparison with five significant RCGAs variants, three state-of-the-art differential evolution algorithms and others three significant evolutionary computing techniques indicated that the proposed approaches enhance RCGA ability to accurately

#### References

- [1] KobayashiS2009 The frontiers of real-coded genetic algorithms *Journal of Japanese Society for Artificial Intelligence(in Japanese)*24(1) 128-43
- [2] Tsutsui S, Yamamura M, Higuchi T 1999 Multi-parent recombination with simplex crossover in real-coded genetic algorithmsProceedingsof the Genetic and Evolutionary Computation Conference 657-64
- [3] Ono I, Kobayashi S1997 A real-coded genetic algorithm for function optimization using unimodal normal distribution crossoverProceedings of the Seventh International Conference on Genetic Algorithms 246-53
- [4] Deb K, Anand A, Joshi D 2002 Computationally efficient evolutionary algorithm for real-parameter evolution*Evolutionary Computation Journal* 10(2)
- [5] Chen Z-Q, WangR-L 2011 A new framework with FDPP-LX crossover for real-coded genetic algorithm/*EICE Transactions on Fundamentals of Electronics Communications and Computer Sciences* 6(E94.A) 1417-25
- [6] EshelmanLJ, SchafferJD 1993 Real-coded genetic algorithms and interval schemata: Foundation of Genetic Algorithms IIMorgan Kaufmann San MateoDL Whitley ed187-202
- [7] Chen Z-Q, WangR-L 2011Two efficient real-Coded genetic algorithms for real parameter optimizationInternational Journal of Innovative Computing, Information and Control7(8) 4871-83
- [8] StornR, Price V, LampinenJ 2005Differential evolution: a Practical approach to global optimization *Berlin Germany: Springer-Verlag*
- [9] Ono S, HirotaniY, Nakayama S 2009 A memetic algorithm for robust optimal solution search - hybridization of multi-objective

Authors

locate solutions in the search space. The empirical study showed the proposed OEGA is an efficiently scheme for solving parameter optimization problem. This, however, does not lead us to claim that the OEGA may outperform their contestants over every possible objective function since it is impossible to model all possible complexities of real-life optimization problems with the limited testsuite that we used for testing the algorithms.

#### Acknowledgments

This work was supported by Natural Science Foundation Project of CQ CSTC(No.cstc2012jjA40041, No.cstc201jjA40059). Science Research Fund of Chongqing Technology and Busines sUniversity (No. 2011-56-05, No. 2013-56-01)

genetic algorithm and quasi-newton methodInternationalJournal of Innovative Computing Information and Control5(12) 5011-20

- [10] Martin D, del Toro R, Haber R, Dorronsorod 2009 Optimal tuning of a networked linear controller using a multi-objective genetic algorithm and its Application to one complex electromechanical processInternational Journal of Innovative Computing Information and Control5(10(B)) 3405-14
- [11] MakinenRAE, PeriauxJ, ToivanenJ 1999 Multidisciplinary shape optimization in aerodynamics and electromagnetic using geneticalgorithms. *International Journal for Numerical Methods in Fluids* 30(2) 149-59
- [12] Deep K, ThakurM 2007 A new crossover operator for real coded genetic algorithms *Applied Mathematics and Computation* 88 895-911
- [13] Qin A K, Huang V L, SuganthanP N 2009IEEE Transactions on Evolutionary Computations13(2) 298-417
- [14] Das S, AbrahamA 2009IEEE Transactions on Evolutionary Computation13(3) 522-53
- [15] AngelineP J 1998 Evolutionary optimization versus particle swarm optimization: Philosophy and the performance difference In Proc. 7th Int. Conf. Evolutionary Programming-Evolutionary Programming VII1447 84-9
- [16] Van den Bergh F,EngelbrechtA P 2004 IEEE Trans EvolComput8(3) 225-39
- [17] Auger A, HansenN 2005 A restart CMA evolution strategy with increasing population size *IEEECongress on Evolutionary Computation*2 1769-76

Zhiqiang Chen, 11.1975, ChongQing, China

#### Chen Zhiqiang, Yun Jiang, Chen Xudong



Current position, grades: associate professor in School of Computer Science and Information Engineering, Chongqing Technology and Business University.

University studies: PhD degree from Fukui University, Japan in 2011. Scientific interests: computational intelligence and its application.

University studies: PhD degree from Huazhong University of Science and Technology, China in 2011.

Jiang Yun, 1983, Hubei, China



### Scientific interests: membrane computing and evolutionary algorithm.

Xudong Chen, 1976, Sichuan, China

Current position, grades: lecturer in School of Computer Science and Information Engineering, Chongqing Technology and Business University. University studies: PhD degree from University of Electronic Science and Technology of China in 2007. Scientific interests: real-time computing, image processing, and optimization problems.

Current position, grades: lecturer in School of Computer Science and Information Engineering, Chongqing Technology and Business University.